19/1/23	MATH 2060A Twotonial
Contact Juf	
Sec 6.1	n/demetire L
	R->R is differentiable at C, if VEDD, IS(E) >D St. if KER
with 0<	x-c <f, have<="" td="" we=""></f,>
$\int f(x) - x - x$	$\frac{-f(c)}{c} - L \Big < \varepsilon \qquad \iff f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$
	- Product Rule, Chein Rule, Ponce Rule,
f (x) - f	$f(c) - (x-c)L] < \epsilon[x-c]$

a_{0} ; $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = \begin{cases} \\ \\ \\ \end{cases}$	$x^2 sin(\frac{1}{2}), x \neq 0$			•
	0 , ×=0			•
Show that f is differentiable for the internal [-1, []	L all xe R, also show	that the derive	eotine is unloounded	•
$\chi \neq 0 f'(x) = 2x \sin\left(\frac{1}{x^2}\right) + 1$		· · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	•
$= 2 \times \sin(\frac{1}{2}) - \frac{2}{x}$	$\cos\left(\frac{1}{x^{2}}\right)$	· · · · · · · · · · ·	· · · · · · · · · · · · · ·	•
$\begin{array}{ccc} x=0 & \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x^2})}{x} = \lim_{x \to 0} \frac{x}{x} \end{array}$	$x\sin(\overline{x}z) = 0.$			•
So f'exists for all x e R. To show unboundedness, m	· · · · · · · · · · · · · · · · · · ·	uoth Xn-> () ou n->po	•
but $ f'(x_n) \rightarrow \infty$ as n				0
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·		•

(For NEW lange enough, since Xn->0, Xn E [-1,1] for all n>N)
$X_{n} = \frac{1}{\sqrt{2n\pi}} \rightarrow 0 \alpha_{N} N \rightarrow \infty$
[f'(kn)] = [2/put sinfznti) - 2√zuit us(znu)] = 2√zuit → a as note./ Q17: Saddle lemme: Sps f: I → R differentiable at CEI, then show that VE20,
RI7: Saddle lemme: Sps f: I > R differentiable at CEI, then show that 450,
there is a $S(\varepsilon) > 0$ s.t. if u, VEI with $\int f(\varepsilon) = f'(\varepsilon) - f$
$C - f(\varepsilon) < u \leq c \leq V < C \leq f(\varepsilon)$, then
$ f(v) - f(u) - (v - u)f'(c) \in \varepsilon(v - u)$
Pf: Take & from defin of demettice above. T(, , ,))
f(v) - f(c) - (v - c)f'(c) - (f(u) - f(c) - (c - u)f'(c))

$\sum_{i=1}^{n} f(v) - f(c) - (v - c) f'(c) + f(u) - f(c) - (v - u) f'(c) $
$\xi \in \varepsilon[v-c] + \varepsilon[c-u] = \varepsilon(v-u)$
Sec G.2
Recall: 1st Dernivative Test: Sps f: is cts at c and déflerentiable on some open
Nolid of c, then if $\exists S = 0$ s.l. for every $x \in (c-d, c)$, $f'(x) \in 0$, and
for every $x \in (C, C+d)$, $f'(x) > 0$, then flies a local minimum at C.
$a_{9}: f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 2x^{4} + x^{4}sin(\frac{1}{x}), x \neq 0 \\ 0, x = 0, \end{cases}$
Show theat of here absolute minum at 1, but thed its demettre here both positive and negotive values in every would of 0.
(shous theat converse to 1st demicitue test is not true).

2: First well show for $x \neq 0$, $f(x) > 0$
Sps. $\exists x_{0} \neq 0$ s.t. $f(x) < 0$, then $2x_{0}^{4} + x_{0}^{4} \sin(\frac{1}{x_{0}}) < 0$ $\langle z \rangle 2x_{0}^{4} < -x_{0}^{4} \sin(\frac{1}{x_{0}}) = 2 < -\sin(\frac{1}{x_{0}})$
$(=) 2x_{0}^{*} < -x_{0}^{*} \sin(\frac{1}{5}) =) 2 < -\sin(\frac{1}{5})$
contraduots (sin(y)) <1 for all y. 3
So ofsa minin oft. $f'(x)$
So 0 is a minimum of $f'(x) = \int \delta x^3 + 4\kappa^3 \sin(\frac{1}{x}) - \kappa^2 \cos(\frac{1}{x}), \ \kappa \neq 0$ $f'(x) = \int \delta x^3 + 4\kappa^3 \sin(\frac{1}{x}) - \kappa^2 \cos(\frac{1}{x}), \ \kappa \neq 0$
$0, \kappa = 0, 1$
Well show $\exists \{k_n\}, \{k_n\}, \{k_n\}, \exists w_n\} \rightarrow 0$ as $n \rightarrow \infty$, but $f'(x_n) < 0$ for every x_n $f'(y_n) > 0$ for every y_n .
f(yn) >0 for every yn,
(This is enorgh, 42-0, xn, yn will eventually be h (-2, 2) for a lage evorgh)
enorgh)
$X_{n} := \frac{1}{2n\pi} \rightarrow 0 \text{ as } n \rightarrow \infty, f'(x_{n}) = \frac{1}{n^{2}\pi^{2}} - 4n^{2}\pi^{2} < 0 \text{ for } n \ge 2$
$2\mu\pi$

$y_{n} := \frac{2}{(4nt!)^{\frac{1}{11}}} \to 0 \text{ as } n \to \infty, f'(y_{n}) = \frac{48}{(4nt!)^{\frac{3}{11}}} \to 0$ $Q_{10} : g: R \to R, g(x) = \begin{cases} x + 2x^{2} \sin(\frac{1}{x}), x \neq 0 \\ 0, x = 0 \end{cases}$ Show that g is not monotonic in any uplied of 0 $P_{1} : g'(x) = \begin{cases} 1 + 4x \sin(\frac{1}{x}) - 2\cos(\frac{1}{x}), x \neq 0 \\ 1, x = 0 \end{cases}$	$for n \ge 1$.	
$\chi_{n} = \frac{1}{2n\pi} \rightarrow 0 \ \alpha_{1} \ n \rightarrow \infty, g'(\chi_{n}) = \frac{1}{2n\pi} -1 < 0$	for NZI	· · · · · · · ·
$y_{n} = \frac{2}{(4nt)\pi} \rightarrow 0 \text{ or } n \rightarrow 20, g'(y_{n}) = \frac{10}{(4nt)\pi} > 0$		